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Project Objective:  
Cheaters are the ones who exploit game bugs to gain unfair advantages over others in games and who 
severely disrupt game balance. Our project’s main purpose is to catch cheaters in PlayerUnknown’s 
Battlegrounds (PUBG), one of the most popular games in the world, using anomaly detection. Our 
analysis is based on the assumption that cheaters are players who have absurdly above-average 
performance in games. 

Data Cleaning and Feature Engineering:  
The dataset we obtained from Kaggle consists of 4 million players’ data with 29 variables.  
We subsetted the data to only include matches in the normal mode, and engineered features that we 
believe as essential attributes to identify cheaters. First, we normalized the number of “kills” according to 
different number of players joined in each game. Then, we combined some similar variables such as 
“rideDistance”, “swimDistance”, “walkDistance” to “totalDistance”. Moreover, we converted some 
variables to percentages or ratios.  
Next, we incorporated the lightGBM method to understand the important features that are significantly 
correlated with winning the game. From the top features, we selected the attributes we believed are 
associated with identifying cheaters: “weaponsAcquired”, “killsNorm”, “roadKills”, “headshotPerc”, and 
“healsAndBoosts”.  

Anomaly Detection with Exploratory Data Analysis:  
The first part of our EDA is about the number of kills that players made in a game. We discovered that 
80% of the players only killed 0 to 2 enemies, which made a player who killed 34 people and won the 
game very suspicious. Therefore, we assumed that if a player kills more than 99% of other players did, 
this person is very likely to be a cheater. We visualized the correlation between final rank percentile and 
the number of kills using Plotly’s boxplot.  
Next, we focused on analyzing “headshotPerc”, which represents how accurately a player shoots an 
enemy in the head. We plotted headshot percentage with final rank percentile in a displot and the graph 
illustrated that most players fall into 0% headshot rate and a small portion with 100% headshot rate. 
Skillful players could have 100% headshot rate; however, if one person kills 15 people all by headshots, it 
was not as simple as being lucky and skillful. Thus, we assumed that if a player kills with all headshots 
for more than 99% of other players do, then this one is considered to be the potential cheater.  
Followed by headshot percentage, we analyzed “roadKills”, the number of people a player killed by 
crashing over using vehicles. We found that only 0.26% of players crashed over enemies using cars, 
meaning killing people using vehicles is extremely difficult. Nevertheless, there’s 1 player who ran over 
18 enemies with vehicle, which was highly doubtful. Hence, if a player kills absurdly many enemies by 
vehicles, we assumed that this individual could be a cheater.  
Moving around collecting weapons is common in the game. We used Plotly’s bubble chart to show the 
correlation between weapons acquired and total distance traveled and targeted on the players who collect 
weapons without traveling as much. We discovered that 0.01% of players collected more than 10 
weapons, just by staying where they were, without moving! One player even acquired 52 weapons 
without moving a single meter. We assumed this kind of “weapon-magnetic players” are possible 
cheaters.  



Our last part of EDA was to analyze across the number of kills and the number of heals and boosts among 
players. We plotted the 3-D graph using Plotly to demonstrate the relationship between kills, heals and 
boosts, and final rank percentile. Particularly, we focused on the players who killed a lot of enemies but 
did not use medical supplies. This is a red flag that player might have the ability to stay alive without any 
help throughout the game. We observed that some players had killed 16 or 17 people all experienced 0 
heals and boosts but still won the game. Therefore, we reasonably suspected players who killed over 10 
people without healing or boosting to be cheaters.  
In order to save computational complexity, we subsetted our data from 4 million to 0.1 million. Based on 
our assumptions above along with EDA, we concluded that there are 1329 potential cheaters out of 0.1 
million players.  

Anomaly Detection with Machine Learning Algorithms:  
The last part of our project is anomaly detection using machine learning algorithms. For the data 
preprocessing part, we first narrowed the dataset down to 5 variables, each corresponds to one perspective 
that we explored during EDA. Then, we standardized the data and applied PCA on them to reduce 
dimensionality and multicollinearity. Through PCA, it is discovered that each component explained a 
significant variation of the dataset. Consequently, the dimension of the dataset was not reduced, so the 
PCA data was discarded. The original data was used for machine learning.   
The first model built is One-Class SVM. The first step of building the anomaly detection model was to 
determine the proportion of anomalies in the dataset. We first treated the 1329 cheating players found 
during EDA to be ground truth, and then compared the proportion of these 1329 players that were caught 
by the 1%, 5%, 10% models, respectively. It turned out that when the anomaly proportion was set to be 
10%, 98.87% of the 1329 players were labeled as cheaters by the model. This showed that 10% was a 
good estimation of the proportion of cheaters in the game, and thus was selected to be the anomaly 
proportion of the dataset. In addition, a true positive rate as high as 98.87% demonstrated that the one-
class SVM model was actually identifying cheaters.  
Next, another anomaly detection algorithm was implemented: Isolation Forest. This method found 
91.27% of the 1329 cheating players, which also signifies that Isolation Forest was a good model to catch 
cheaters.  
The final step is to compare and integrate the results produced by SVM and Isolation Forest models. It 
was discovered that 6563 players who were labeled as cheaters by both models, resulting in an overlap 
coefficient of 64.39%. Through this comparison process, we conclude that these 6563 players were very 
likely to be cheaters. 

Conclusion and Future Improvement:  
To sum up, we used EDA to find potential cheaters and built the anomaly detection models, one-class 
SVM and Isolation Forest, to test the accuracy. In the end, we found 6563 cheaters out of 0.1 million 
players.  
Identifying cheaters has always been a huge challenge posed to the game industry. One difficulty to our 
models and also to the data scientists in the gaming companies is distinguishing between exceptionally 
good players and cheaters. One potential improvement of our project would be not only comparing 
horizontally across different players, but also vertically on historical data on one player. Hopefully, in this 
way, the cheaters can be more accurately identified.  


