STATS 101C Final Project

Team **Stats Trek** Jiahao Huo | Jia Qi Wang | Xiao Li

Our Best Model

- Algorithm: eXtreme Gradient Boosting (package: xgboost)
- Target Variables: elapsed_time (numeric)
- Independent Variables: 10 variables
 - \succ 6 variables from the original dataset
 - 4 newly created variables

Parameters

- ≻ Eta: 0.3
- > Max_depth: 10
- ➢ Nround : 100

Feature Engineering

→ 6 Variables from Original Dataset

\diamond	year	4 levels
\blacklozenge	First.in.District	102 levels
\blacklozenge	Dispatch.Status	12 levels
\blacklozenge	Dispatch.Sequence	int
\blacklozenge	Unit.Type	41 levels
\diamond	PPE.Level	2 levels

→ 4 Newly Created Variables

\blacklozenge	Fd (fire department)	2 levels
\blacklozenge	Incident	num
\blacklozenge	Creation	4 levels
\blacklozenge	Cnt (count)	int

Without Utilizing External Data

→ Incident.Creation.Time

- Convert Incident.Creation.Time into 4 levels
 - (00:00~06:00, 06:00~12:00, 12:00~18:00, 18:00~00:00)
- → Separate incident ID into 2 new variables by using substring
 ◆ fd (fire department; factor with 2 levels)
 ◆ incident (incident number: numeric)
- → Create a new variable, cnt (int), from incident.ID
 ♦ the number of vehicles dispatched in the same incident

With Utilizing External Data

- → Import Data from LA
 Times
 ♦ Division
 - 3 levels
 - Battalion
 - 17 levels

LAFD First-in Districts

Dealing with NAs

★ elapsed_time, PPE.Level and Dispatch.Sequence

- Deleted all NAs in elapsed_time since it is target variable
- For other NAs in PPE.Level and Dispatch.Sequence, our model has a built-in feature to deal with them.

Variables Selection

• After applying different techniques, we dropped insignificant variables

- row.id
- \circ incident.id
- Emergency.Dispatch.Code
- Incident.Creation.Time
- DIVISION
- BATTALION

Parameter Tuning

• Range of values we have tried

- Eta: 0.01-1.0 (Final choice: 0.3)
- Max_depth: 1 10 (Final choice: 3)
- Nround: 1 1000 (Final choice: 100)

WORST MODEL :)

- 1. Import dataset with negative values of elapsed_time
- 2. Do the same process of analyzing
- 3. Add 86400 to all negative prediction values

FINAL MSE: 1816388753.76668

Thank You!